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ABSTRACT

Background and Objective. Access to healthcare remains a challenge in most areas in the Philippines. Fifty-three 
percent (53%) of the Philippine population do not have access to a rural health unit (RHU) within a 30-minute travel 
time. As a response, the Department of Health (DOH) needs to construct an additional 2400 RHUs by 2025. This 
paper uses the Philippine Health Facility Development Plan 2020-2040 (PHFDP) as a reference to present a solution 
for locating sites for RHU placement in under-served areas using neural networks to meet the 30-minute travel time 
by maximizing population accessibility.

Methods. RHU accessibility was measured using geographic attributes as inputs to a back propagation neural network 
(BPNN) and a recurrent neural network (RNN): (1) land coverage and hazard data, representing geographical limitations; 
(2) population density and distribution, indicating demand for healthcare services; and (3) infrastructure-related 
features, such as road networks, points of interest, and the locations of existing RHUs, which influence healthcare 
accessibility. The models were trained to identify underserved areas and were implemented on a nationwide scale, 
excluding NCR, to locate candidate areas to increase population access to the new RHUs. The models were validated 
using a healthcare facility accessibility index (HCFAI) to assess RHU coverage improvement.

Results. The BPNN showed stronger generalization across regions, achieving 79.1% average accuracy in distinguishing 
low from high accessible areas on Region 1 and identifying 1668 out of 3305 locations in the region as candidate 
sites. The RNN, better capturing unique regional characteristics, required separate training: 77.2% average accuracy 
on Region 1, identifying 1593 candidate sites. Our findings suggest expanding the use of land improves population 
access to healthcare facilities. Both models found more than the needed number of RHUs by 2040. The BPNN was 
more consistent than RNN to improve a region’s overall accessibility by increasing the HCFAI. The BPNN can increase 
population access to an RHU from 2.5-98.5% from its original population with access to an RHU. 

Conclusion. The study demonstrates the usage of geographic attributes and neural networks to improve healthcare 
accessibility. The BPNN and RNN are adequate algorithms to find under-served areas and candidate sites for RHU 
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construction to maximize population accessibility. The 
HCFAI metric validates the locations to highlight which 
neural network maximizes more of the region’s popula-
tion. The study contributes to ongoing efforts to improve 
healthcare infrastructure and accessibility, offering data-
driven recommendations for RHU locations.
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INTRODUCTION

Healthcare Facilities Inaccessibility and System in 
the Philippines 

Access to healthcare remains a challenge in the Philip-
pines due to insufficient health infrastructure to accommodate 
the growing population.1 The country is an archipelago of 
7,641 islands, making it difficult to reach geographically 
isolated and disadvantaged locations2 in need of rural 
health units (RHUs). This presents geographical challenges 
for remote areas to meet standards of the Philippine 
Health Facility Development Plan 2020-2040 (PHFDP) 
compared to developed areas in terms of disparities in health 
accessibility.3 This study applies the proposed solution to all 
regions in the Philippines, excluding the National Capital 
Region (NCR). The PHFDP was established to align with 
the Universal Health Care Act of 2019 (UHC) to provide 
healthcare to Filipinos.4,5 Primary care facilities (PCFs) 
provide primary health services which support first-contact, 
accessible, continuous, comprehensive and coordinated 
person-focused care.1,6 RHU is a type of PCF that supports 
consultations and laboratory tests to name a few.1 As of 
2019, the country has 3012 PCFs and aims for 6013 by 2040 
(99.6% increase). Additional RHUs are achieved through 
site selection, identifying optimal locations to maximize 
healthcare access.7-10 The study hypothesizes adding RHUs 
improves primary healthcare access in underserved areas to 
meet the 30-minute travel time. Using back propagation 
neural network (BPNN) and recurrent neural network (RNN) 
to optimize PCF locations, highlights how machine learning 
(ML) contributes to increasing accessibility and reducing 
healthcare disparities by providing actionable insights for 
policy makers, precise planning, and resource allocation. This 
study was conducted by a multidisciplinary team with expertise 
in ML, data analysis, and public health. The researchers have 
backgrounds in computer science, geographic information 
systems (GIS), and ML, ensuring a well-rounded technical 
approach in addressing healthcare accessibility challenges. 

Related Work 
Access to healthcare in the Philippines is limited, with 

both health workers and patients facing challenges such as 
inadequate resources in public hospitals.1,11,12 The country 
implements various health policies, including the United 
Nations' third Sustainable Development Goal (SDG) for 
health and well-being, and the UHC framework developed 
by the World Health Organization (WHO).13 The PHFDP 
aims to expand healthcare access by adding PCFs, which 
serve as the entry point into the healthcare system.1 The study 
supports PHFDP’s goals through increasing RHU access. As 
an example, one study proposes utilizing common models 
to address the facility location problem (e.g., cooperative 
covering maximal models) by locating optimal locations for 
PCFs in Antipolo City in Region 4-A due to scarce application 
of model implementation in the Philippines for underserved 

areas.10 It builds on the idea performed in Antipolo City by 
applying ML methods on a regional scale. Unlike traditional 
models, which rely on mathematical formulations and 
struggle with complex, non-linear relationships, BPNN 
and RNN models adapt and improve with new data and 
automate the site selection process. 

The PHFDP provides a map of the current distribution of 
RHUs with a percentage of population access and the number 
of facilities needed per region by 2040 represented by near-
accurate coordinates supplied by a geocoding Python library, 
since not all RHU coordinates are publicly available. This 
study aims to contribute to the improvement of healthcare 
infrastructure by identifying optimal locations for RHUs. 
Using a geographic map of the Philippines, the objective is 
to strategically distribute RHUs in areas with populations 
that have limited access to healthcare services. The BPNN 
enhances efficiency of big data calculations and broadens the 
scope of site selection. BPNNs have shown to be effective 
in determining optimal locations for retail stores, hotels, and 
supermarkets, outperforming traditional regression models 
in multi-factor problems.7,9 They provide higher accuracy 
than other methods like SVRs, random forest, and root mean 
square error. Similarly, RNNs have been applied in geographic 
contexts, such as urban route planning,15 where it effectively 
predicts optimal paths using spatial data. Its adaptability to 
static and dynamic environments highlights its potential for 
identifying optimal routes. BPNNs reduce prediction errors 
through gradient descent, while RNNs use internal memory 
to process past inputs.14,15 The study aims to contribute to the 
existing literature pool of health accessibility studies done 
in the Philippines for expanding the methods used in these 
studies within the healthcare context. 

MATERIALS AND METHODS

RHU site selection is traditionally manual. Our ML 
approach automates this process, integrating geographic 
and population demographic data for systematic, scalable 
and precise planning. The dataset describes area accessibility 
through geospatial factors by combining: roads, points of 
interest (POIs), RHUs, land coverage, population density, and 
hazards (flood, drought, rain intensity). This data forms a 1.65 
km² hexagonal grid (30-minute travel time) with parameters 
influencing a healthcare facility accessibility index (HCFAI) 
ranging from 0 to 1. HCFAI, developed for this study, uses 
the geospatial factors to measure population coverage to 
an RHU, with high values indicating better coverage. The 
PHFDP outlines strategies for healthcare infrastructure 
expansion but does not include a standardized metric for 
measuring population accessibility to healthcare facilities. 
It only has the PCF formula to determine the projected 
needs. The team developed a custom accessibility metric 
(HCFAI)1 that integrates the PCF formula with geographic 
and demographic factors, incorporating travel distance and 
existing healthcare facility distribution. This metric allows for 
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a data-driven assessment of underserved areas and optimal 
RHU placement. Using k-means clustering, areas are classified 
as high-access (1) or low-access (0), prioritizing low-access 
zones for modeling. For conciseness, Region 1 is presented as 
a sample in Figures 1 and 2, and Figures 3 and 4 to illustrate 
geospatial mapping of the RHU sites. The same methodology 
was applied to other regions, but they are not displayed due to 
image scaling constraints. The maps highlight roads, RHUs, 
POIs, and population density for Region 1, omitting some 
factors for clarity (Figure 5).

The dataset was normalized and up-sampled using 
SMOTE library to address the imbalance between low and 
high-accessible areas, ensuring unbiased training for the 
models. The up-sampled dataset, both models were trained 
using 10-fold cross-validation to obtain a version model 
with the highest accuracy. Table 1 is the architecture of the 
models. The researchers implemented a BPNN and RNN 
using Python 3.9, PyTorch 2.6.0 with CUDA 12.4 support, 
PyCaret, Pandas, scikit-learn, and QGIS for spatial data 
processing, and the code can be made available upon request 
to ensure replicability.

Each area is equally represented by ensuring complete 
documentation of factors, preventing model bias. The 
models were trained with 10-fold cross-validation, selecting 
the highest accuracy fold to identify regional candidate 
sites for RHUs. BPNNs generalized across regions while 

RNNs required retraining per region due to dependence 
on regional historical data. Candidate sites identified are 
potential locations addressing low-access areas. The HCFAI 
of the region was recalculated to validate the BPNN and 
RNN models.

RESULTS

Model Training and Testing
The BPNN (batch size 64) outperforms the RNN (batch 

size 128) in precision for low-access areas (0.97 vs. 0.83) and 
recall for high-access areas (0.98 vs. 0.85). BPNNs achieve 
higher overall accuracy (0.78 vs. 0.77) and MCC (0.622 
vs. 0.552), RNNs show more balanced recall across classes. 
BPNNs have a higher F1-score for class 1 (0.81 vs. 0.79), 
while the RNN slightly outperforms in class 0 (0.76 vs. 0.75). 
Metrics are detailed in Tables 2 and 3.

Model Application and Validation: Searching for 
Candidate Sites

The trained BPNN (Figure 3) identified 1,668 candidate 
sites in Region 1 (50.5% of the land area), while the RNN 
(Figure 4) identified 1,417 sites (42.9%). The legend for 
the symbology is on Figure 6. The RNN models trained 
on regional data identified more low accessible areas in the 
region.

Figure 1. Population density map of Region 1. Figure 2. Geographical features of Region 1.
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Figure 4. RNN: Region 1 existing (left) and candidate sites alongside existing RHU locations (right).

Figure 3. BPNN: Region 1 existing (left) and candidate sites alongside existing RHU locations (right).
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The BPNN consistently increased the overall HCFAI 
of each region. For instance, regions with 76-100% of its 
population classified having no access saw at least an 8% 
increase in HCFAI: MIMAROPA (increased by 17.5%), 
BARMM (23.4%), and Region 5 (8.82%) if RHU were 
to be put up (Figure 7). The population benefits with the 
HCFAI increase. Figure 8 covers how much more of the 
population gain access if RHUs were to be placed in all the 
candidate sites. Regions 5 and 10 have the greatest population 
coverage increase at 91.8% and 98.5%, respectively.

DISCUSSION

Model Application and Validation: Candidate Site 
Search

Tables 2 and 3 show the BPNN is better at identifying 
low-access areas with lower recall for low-access areas. It is 
unable to correctly identify low-access areas (61%) unlike 
the way it correctly identifies high-access areas (98%). The 
effects are reflected in Figures 3 and 4 where the candidate 
sites are alongside the existing RHU sites. The models 
classified similar areas as low accessible with the RNN 
having a more distributed set of sites while the BPNN found 
sites in clusters (noticeably dense in north and south of the 
region). Both models agree on some locations, but different 
site selections indicate that each model interprets healthcare 
accessibility uniquely. BPNNs find RHU sites more densely 
(e.g., urban areas) while RNNs distribute RHUs evenly, 
regardless of population density. 

RNN exceeds BPNN in classifying more than half of 
the total area during model application as candidate sites 
(Figure 9). RNN provides more options for RHU placement 
and suggests flexibility or inclusion in its classification 
criteria. This may indicate improved pattern recognition in 
spatial data or greater sensitivity to key factors influencing 
site suitability. As a result, decision-makers would have more 
site options when planning RHU placements, potentially 
improving accessibility and service coverage. In Region 2, it 
classified 8824 of 9407 (93.8%) of the region as a potential 
RHU site. Figure 7 shows BPNN outperformed the RNN 
in terms of HCFAI increase in each region. It was higher 
than the original HCFAI value of the region. BPNN’s ability 

to generalize without retraining makes it cost-effective, as it 
can be used across regions without additional computation. 
The RNN, requiring retraining for each region varied in 
performance, and at times, would be lower than the original 
HCFAI value (Region 13 and BARMM). 

Although RNN identified more candidate sites (Figure 
9), these locations were not always most optimal in terms of 
increasing HCFAI. Retraining RNNs for each region adds 
computational complexity and may lead to inconsistencies 
in performance across different areas. The factors influenced 
models’ site predictions. Areas with high population density 
and no nearby RHU, and locations near POIs (e.g., schools, 

Table 2. BPNN Evaluation for Region 1 Training
Metric Precision Recall F1-score Support

Class 0 0.97 0.61 0.75 1033
Class 1 0.70 0.98 0.81 944
Macro Average 0.83 0.79 0.78 1977
Weighted Average 0.84 0.78 0.78 1977
F1 0.7470308788598575
MCC 0.6224087961220331
Accuracy 0.78

Table 3. RNN Evaluation for Region 1 Training
Metric Precision Recall F1-score Support

Class 0 0.83 0.70 0.76 1000
Class 1 0.73 0.85 0.79 977
Macro Average 0.78 0.77 0.77 1977
Weighted Average 0.78 0.77 0.77 1977
F1 0.7559652928416486
MCC 0.5524367788813155
Accuracy 0.77

Table 1. BPNN and RNN Model Training Architecture
Number 
of Layers Batch Size Number 

of Epochs
Activation 
Function Optimizer

BPNN 6 16,32,64,128 250 Sigmoid SGD
RNN 6 16,32,64,128 250 Tanh Adam

Figure 5. Geographical and population density 
legend maps.

Figure 6. Legend for candidate and 
existing sites.
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markets), are prioritized. Overall, the BPNN performs better 
than the RNN due to its consistent performance, as shown 
in Figures 7 and 9. It is cost-effective, simple, and fast to use 
if policy makers and local government units (LGUs) were 
to plan their healthcare infrastructure.

Impact on Philippine Healthcare Accessibility
The results highlight healthcare inaccessibility across 

the regions, revealing that despite numerous potential RHU 
sites, access remains uneven. Figures 7-9 can help guide 
policy makers to see how many Filipinos in different areas 
could reach universal healthcare status. The results expand 
population coverage accessibility to PCFs, especially those 

who do not meet the 30-minute travel time requirement. 
Placing RHUs in candidate sites reduces high inaccessibility 
in regions. For instance, areas where 76-100% of the 
population lack facility access. Regions classified with high 
levels of population inaccessibility, Region 5, MIMAROPA, 
and BARMM1, at least half (or nearly half ) the total area 
was identified as a potential RHU site and increased 
population coverage. The HCFAI was a significant metric 
to demonstrate a greater population can benefit if granted 
access to RHUs. The maps generated above could aid LGUs 
or health policy makers in planning for RHU construction 
and what key areas to prioritize based on the population 
coverage requiring one.

Figure 7. Original vs. updated HCFAI of each region recalculated after applying the BPNN and RNN.

Figure 8. Initial vs. updated population access to an RHU if a facility were to be placed in all candidate sites.
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For patients, the proposed solution would increase access 
to healthcare by ensuring a balanced distribution of facilities 
nationwide, including in remote areas far from major cities to 
be within 30 minutes from their homes. For health providers, 
the models offer valuable insights to make well-informed, 
data-driven decisions to improve healthcare infrastructure. 
The models suggest optimal locations based on population 
needs, enabling more targeted resource allocation. Figure 
8 gives policy makers an idea of the effects of the number 
of RHUs constructed in a given area to how much of the 
population would gain access. This could be a starting point 
of how policy makers could prioritize RHU construction 
based on which population needs it most. The PHFDP could 
also benefit from having the population access coverage 
metric alongside the target number of RHUs needed by 
2040. The findings demonstrate the potential for digitizing 
healthcare planning, for the DOH, LGUs, and local policy  
makers. The HCFAI serves as a basis for assessing health-
care accessibility, enabling data-driven decision-making, 
and improving equitable distribution of health services. 
By including this metric and integrating the results with 
PHFDP, we contribute to evidence-based decision-making 
and planning healthcare infrastructure, ultimately improving 
equitable healthcare access for Filipinos.

Limitations
A geo-location API was used to identify RHU coordi-

nates from the list of RHUs in the DOH’s database. Future 
research can complete the current list of coordinates. 
Moreover, different hazards (outside of flooding, drought, 
and rain intensity), like volcanic eruptions and earthquakes, 

were not included in the study due to data availability and 
accessibility. A key limitation is the absence of a standar-
dized accessibility metric within the PHFDP. While 
our proposed metric provides a structured approach to 
evaluating healthcare access, future research should explore 
validation with empirical data, stakeholder consultations, 
and integration with national health planning frameworks. 
Another factor not accounted for is land ownership, as 
publicly available datasets do not typically include this 
information. While the models identify optimal RHU 
locations based on accessibility and geographic factors, the 
feasibility of constructing facilities in these areas may be 
influenced by land availability, ownership disputes, or zoning 
restrictions. Future studies could incorporate land owner- 
ship data, if available, to enhance the practical applicability 
of site selection recommendations. Furthermore, the paper 
could be improved by scaling its results on a municipality-
level, instead of a regional-level, as RHUs are locally managed. 

CONCLUSION

The study developed BPNN and RNNs using geospatial 
features to identify optimal RHU locations. The models 
adapt to local contexts, aiding strategic resource allocation 
and healthcare planning, making these scalable across 
regionally. The BPNN is preferred for planning the health 
infrastructure because it is able to locate candidate sites for 
RHUs while increasing population’s access to RHUs. It is 
able to generalize across regions without retraining makes it 
practical for large-scale implementation. Findings contribute 
to public health research, providing a metric for accessibility 

Figure 9. Cumulative need for RHUs by 2040 vs. the number of sites generated by the RNN and BPNN.
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to take into account when considering population. This 
provides actionable insights for health officials to effectively 
plan around the existing health infrastructure to improve 
accessibility in underserved areas. Though not yet used by 
Filipino policy makers, the methods provide a foundation 
for digitizing healthcare accessibility planning.
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